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Abstract
The electronic structure of a spherical quantum dot with parabolic confinement
that contains a hydrogenic impurity and is subjected to a DC electric field is
studied. In our calculations we vary the position of the impurity and the electric
field strength. The calculated electronic structure is further used for determining
the nonlinear optical rectification coefficient of the quantum dot structure. We
show that both the position of the impurity and the strength of the electric field
influence the nonlinear optical rectification process.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the past 15 years the optical properties of semiconductor nanostructures have attracted
considerable attention [1, 2]. In this area significant interest has been given to semiconductor
quantum wells and quantum dots that are characterized by an asymmetric confining
potential [3–22]. The asymmetry of the confining potential can be produced by either advanced
material growing technology, such as molecular-beam epitaxy and metallic–organic chemical
vapor deposition, or by the application of a static electric field to a nanostructure with
symmetric confining potential.

Among the nonlinear optical processes in semiconductor nanostructures, interest
has been paid to second-order nonlinear optical properties, such as nonlinear optical
rectification [7, 15, 18, 19, 21] and second-harmonic generation [6, 7, 11, 17]. This happens as
the second-order nonlinear processes have magnitudes that are usually stronger than those of
high-order ones, if the quantum system demonstrates significant asymmetry.

In parallel, impurities such as confined donors or acceptors in quantum dots have been
extensively investigated [23–37]. Several numerical methods, both perturbative and exact
numerical, have been developed in order to systematically investigate the physical properties
of impurities embedded in a quantum dot. In most theoretical investigations the confinement
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potential of quantum dots is assumed to possess square (either finite or infinite) or parabolic
shape. The parabolic confinement is more appropriate when the quantum dots are fabricated
by etching processing on a quantum well, by ion implantation or by application of electrostatic
gates.

In the present work we study three-dimensional semiconductor quantum dots with
parabolic confinement containing donor impurities. The system can also interact with a DC
external electric field. We use the potential morphing method for the calculation of the
electronic structure of the system [37–39]. In this work, we concentrate on the calculation of
the ground and first excited energy states of the quantum dot system. The effects of the external
electric field are found to be more significant for larger dot radii. Moreover, the influence of
the external electric field increases as the position of the hydrogenic impurity becomes more
off-centre.

Then, by a density matrix approach and a perturbation expansion method, within a two-
level system approach, the nonlinear optical rectification coefficient of the system is obtained.
For nonzero electric field the system becomes effectively asymmetric, and thus with finite
nonlinear optical rectification coefficient. A systematic behaviour is reported, revealing that the
increase of the electric field amplitude enhances the maximum value of the nonlinear optical
rectification coefficient and shifts this maximum to smaller photon energies. This effect is more
pronounced for larger quantum dot sizes. The observed behaviour is attributed to the increase
of the asymmetry of the system.

2. Numerical results

The Hamiltonian of the system in three dimensions is given by the expression

H = p2

2m∗ + 1

2
m∗ω2

0r 2 − e2

ε|�r − �ri | + eE · (z − zi ), (1)

where E is the external applied electric field amplitude (taken along the z-axis), z is the position
of the electron along the z-axis, zi is the position of the donor impurity along the z-axis, and
�ri = ẑzi . Also, m∗ is the effective electron mass, ε is the relative dielectric constant, and ω0 is
the characteristic angular frequency of the harmonic oscillator.

We are interested in obtaining the energies and the wavefunctions of the ground and
the first excited state of the Hamiltonian (1), as these are needed for the calculation of
the optical rectification coefficient. We will use the potential morphing method for this
calculation [37–39]. The three-dimensional stationary Schrödinger equation for a particle of
mass m in a potential υR(�r) + υS(�r) has the form{

− h̄2

2m
∇2 + υR(�r) + υS(�r)

}
�R+S(�r) = ER+S �R+S(�r), (2)

where υR(�r) is a (reference) potential with known eigenfunctions �R(�r) and eigenvalues ER,
and υS(�r) is an arbitrary shape interaction potential. The essential point is that the transition
from potential υR(�r) to potential υR(�r) + υS(�r) can be performed by means of the time-
dependent Schrödinger equation as follows: using the potentials υR(�r) and υS(�r) we formulate
a time-dependent Schrödinger equation

ih̄
∂�(�r , t)

∂ t
=

{
− h̄2

2m
∇2 + υR(�r) + υt(�r)

}
�(�r , t), (3)

with [38]

υt (�r) = σ(t)υS(�r), (4)
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where σ(t) has the following property:

σ(t) =
{

0, t � ta
1, t � tb.

(5)

For ta � t � tb the function σ(t) may have any shape, but it should increase monotonically.
We solve equation (3) iteratively. After several iteration steps with respect to time t and

for t > tb, the energy eigenvalue ER+S for the potential υR(�r) + υS(�r) is given by

ER+S =
∫

d3r �∗
R+S(�r)

{
− h̄2

2m
∇2 + υR(�r) + υS(�r)

}
�R+S(�r), (6)

where �R+S(�r) is the wavefunction of the system.
In our numerical calculations we take as a reference system (υR(�r)) the usual harmonic

oscillator in three-dimensions with eigenfunctions

�nlm(r, θ, φ) = r l e−r2/2R2

1 F1(−n, l + 3/2; r 2/R2)Ylm(θ, φ), (7)

with R = √
h̄/m∗ω0 being the characteristic radius of the quantum dot. In our study we assume

a CdS quantum dot and take m∗ = 0.18m0 (m0 is the mass of a free electron) and ε = 5.23.
The Bohr radius of this system is 3 nm. Moreover, in our numerical calculations the υS(�r)

interaction potential corresponds to the last two terms of the Hamiltonian of equation (1).
The results of the energies of the ground and the first excited state (the state that has been

obtained by the 010 reference state, and it is denoted as the 010 excited state later on) of the
system as a function of the external electric field amplitude E are shown in figure 1 for several
values of the radius of the quantum dot and for the hydrogenic impurity taken both on-centre
and off-centre. We choose the quantum dot radius to be R = 2 nm, just below the Bohr radius,
R = 3 nm, at the Bohr radius, and R = 5 nm, above the Bohr radius. It is found that for the
case of zero external field the difference between the first excited state and the ground state is
linearly proportional to the inverse of the square of the quantum dot radius. We also find that
for a specific quantum dot radius and position of the impurity the energy difference is weakly
influenced by the external electric field, but one may note that the increase of the electric field
amplitude leads to a decrease of the energy difference of the first excited state and the ground
state of the system. The latter is more pronounced in figure 1(f).

We would like to mention that the reference system of the three-dimensional harmonic
oscillator has three-fold degeneracy in the first excited state. This also holds in the case of an
on-centre impurity with zero electric field. As it is shown in figure 2, the electric field will
gradually lift this degeneracy and one obtains a nondegenerate first excited state from state 010
and two degenerate states from states 011 and 01−1. We stress here that from these states only
the state that we denote with 010 contributes to the nonlinear optical rectification coefficient,
as the corresponding matrix elements of the ground state with the other two states have zero
values.

The nonlinear optical rectification coefficient of an asymmetric quantum dot can be
obtained by a density matrix approach and a perturbation expansion method, and it can be
written, within a two-level system approach, as [7, 15, 18, 19, 21]

χ
(2)
0 (ω) = 4

e3σs

ε0h̄2
μ2

01δ01

ω2
01

(
1 + T1

T2

) + (
ω2 + 1

T 2
2

)(
T1
T2

− 1
)

[
(ω01 − ω)2 + 1

T 2
2

][
(ω01 + ω)2 + 1

T 2
2

] , (8)

where

μ01 = 〈�0|z|�1〉 (9)

δ01 = 〈�1|z|�1〉 − 〈�0|z|�0〉, (10)
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Plot of the energies of the ground (squares) and the first excited state (010) (circles)
of the system as a function of the external electric field amplitude E . In (a) R = 2 nm, zi = 0,
(b) R = 2 nm, zi = 0.5R, (c) R = 3 nm, zi = 0, (d) R = 3 nm, zi = 0.5R, (e) R = 5 nm, zi = 0
and (f) R = 5 nm, zi = 0.5R.

with �0, �1 being the wavefunctions of the electron in the ground state and in the first
excited state, respectively. Also, ω01 is the transition frequency that corresponds to the energy
difference of the first excited state and the ground state, σs is the density of electrons in the
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Figure 2. Plot of the energies of the excited states
(010) (circles), (0 1 1), (01 − 1) (squares) of the
system as a function of the external electric field
amplitude E for the case that R = 5 nm, zi = 0.

Figure 3. Plot of the energy difference of the
first excited state (010) and the ground state of the
system as a function of the external electric field
amplitude E for several values of the quantum dot
radius and the position of the impurity.

quantum dot, ε0 is the vacuum permittivity, T1 is the longitudinal relaxation time and T2 is the
transverse relaxation time.

For ω ≈ ω01, there is a peak value of χ
(2)
0 (≡ χ

(2)
0,max), estimated by the expression

χ
(2)
0,max = 2e3T1T2σs

ε0h̄2
μ2

01δ01. (11)

As we have noted above, when we calculate the factor μ2
01δ01 separately for the ground state

and the states ((010), (011), (01 − 1)), we find that this factor obtains a nonzero value only for
the state (010). In our calculations the relaxation times are set to T1 = 1 ps, T2 = 0.2 ps [40]
and the electron density is taken as σs = 5 × 1024 m−3.

As we have noted above, the position of the maximum of the nonlinear optical rectification
coefficient is found at ω ≈ ω01. In figure 3 we plot the values of h̄ω01 as a function of the
electric field amplitude for various values of the quantum dot radius and the position of the
impurity. It can be seen that for given values of the quantum dot radius and the position of
the impurity, ω01 depends weakly on the electric field amplitude. From all the cases the most
significant influence of the electric field is found for larger quantum dot radius. In the latter
case, we can also note that the increase of the electric field amplitude leads to a decrease of
the energy difference of the first excited state and the ground state of the system. In addition,
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(a) (b)

(c)

Figure 4. Plots of the nonlinear optical rectification coefficient χ
(2)
0 (ω). In all figures zi = 0.5R,

E = 0 (black curve), E = 4 V m−1 (red curve), E = 8 V m−1 (green curve). In (a) R = 2 nm,
(b) R = 3 nm and (c) R = 5 nm. The insets focus on the maxima of χ

(2)
0 (ω).

the increase of the position of the impurity shifts ω01 to smaller values for a given quantum dot
radius. The larger influence with the position of the impurity is found for smaller values of the
quantum dot radius.

Typical nonlinear optical rectification spectra are shown in figures 4 and 5. We find that the
increase of the electric field amplitude enhances the maximum value of the nonlinear optical
rectification coefficient and shifts this maximum to smaller photon energies. These facts are
more pronounced in the case of figure 4(c), where R = 5 nm. The enhancement of the nonlinear
optical rectification coefficient can be attributed to the increase of the asymmetry of the system
and thus to the enhancement of the factor μ2

01δ01. The shift of the nonlinear optical rectification
coefficient maximum is attributed to the decrease of the energy difference with the increase of
the electric field amplitude, that we noted in figures 1 and 3. In addition, the larger values of
the nonlinear optical rectification coefficient are obtained for larger quantum dot radius, i.e. in
the case that R = 5 nm. Finally, as we can see from figure 5, for a given value of the electric
field amplitude and the quantum dot radius the increase of the position of the impurity leads to
a strong increase of the maximum value of the nonlinear optical rectification coefficient. The
reason for this is that the system becomes more asymmetric with the increase of the position of
the impurity. This increase also shifts the maximum of the spectrum to smaller frequencies, as
was also noted in figure 3.
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Figure 5. Plot of the nonlinear optical rectification coefficient χ
(2)
0 (ω) for three values of the

position of the impurity, zi = 0 (black curve), zi = 0.5R (red curve) and zi = 0.8R (green
curve). In addition, E = 5 V m−1 and R = 3 nm.

(a)

(c)

(b)

Figure 6. Plots of μ2
01δ01 as a function of the external electric field amplitude E . With squares we

denote the case that zi = 0 and with circles the case that zi = 0.5R. In (a) R = 2 nm, (b) R = 3 nm
and (c) R = 5 nm.

The above findings regarding the maximum value of the nonlinear optical rectification
coefficient are also shown in figure 6, where we depict the values of μ2

01δ01 as a function of
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the applied electric field amplitude for all the cases we studied. In addition, for an on-centre
impurity and no applied electric field we see that, for all radii we have studied, the factor μ2

01δ01

equals zero. This is expected, as in this case the system is symmetric, so there is no nonlinear
optical rectification process. We also find from figure 6 that for the same electric field amplitude
and the same quantum dot radius the case of off-centre impurities gives larger maximum values
of the nonlinear optical rectification coefficient than the case of on-centre impurities, as was
also found from figure 5.

3. Summary

In this work we have studied numerically the electronic structure of a spherical quantum dot
with parabolic confinement that contains a donor impurity and interacts with a DC electric
field. Both the impurity and the electric field lead to an asymmetry in the otherwise symmetric
confining potential. In our calculations we have varied the position of the impurity and have
taken an electric field of varying strength along the z-direction. The calculated electronic
structure is then used for the determination of the nonlinear optical rectification coefficient
of the quantum dot structure. We show that both the position of the impurity and the strength
of the electric field influence the electronic structure of the system and the nonlinear optical
rectification process.
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